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Abstract

We consider a class of nonlinear systems for which a positive solution exists
and is unique. Such systems appear quite naturally in several applications
concerning difference equations. Moreover, certain extremum problems can be
reduced to solving these systems. In order to solve such problems we develop
a quasi-Newton algorithm which is very efficient just because the existence and
uniqueness of the solution are guaranteed. Several numerical examples illustrate
the general results.
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1 Introduction
Consider the system

a1y + ajpro + -+ a1, = f(21)

a101 + a2 + -+ - + a2pxy = f(22)
(SF)q -+
Ap1X1 + Ap2Xa + -+ AppTy = f(l’n)
1 >0,20>0,...,2, >0,
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where a;; > 0, i,j = 1,...,n, and f : (0,400) — (0,+00) is a continuous
function.

It appears quite naturally in several applications related to
- second, third and fourth order difference equations;

- three-point boundary value problems;

- Dirichlet problems for partial difference equations;

- periodic solutions for difference equations;

- numerical solutions for differential equations;

- steady states of complex dynamical networks.

For details see [7], where even more general systems are considered. Deep results
concerning the iteration methods for weakly nonlinear systems Az = ®(x) can
be found in [1] and the references therein; in [1] A is a complex matrix and
®: D c C*— C"” is a continuously differentiable function defined on a domain
D, all of them subject to suitable assumptions.

When f(z) = 29 for some given ¢ € R, we use the notation (S,) instead of
(Sy). It was proved in [7, Theorem 3.1] that for ¢ > 1 the system (S,) has a
unique solution.

In Section 2 we present sufficient conditions on f guaranteeing the exis-
tence and uniqueness of the solution to Sy. These conditions are satisfied, in
particular, by f(z) = 27 for ¢ € (—o0, —1] U (1, +00).

A quasi-Newton algorithm for solving an extremum problem associated with
(Sy) is described in Section 3. It is very efficient, when the solution exists
and is unique, for example under the assumptions of Theorems 1 and 2. This
ezistence and uniqueness property is really important: as G. J. McLachlan and
Th. Krishnan say on page 90 of their book [5], who knows what pitfalls there
may be when the algorithm is used in more complicated settings where multiple
extremum points are present.

The Newton algorithm corresponding to our special setting is also described
and compared with the quasi-Newton algorithm. For both of them the general
convergence theorems can be applied. As proved in Section 2, our special setting
has an essential feature: existence and uniqueness of the solution, and usually
this particularity leads to better results.

Extremum problems which lead naturally to (Sy) are presented in Sections
3 and 4.

Numerical examples can be found in Section 5.

2 Existence and uniqueness

Let

Si=ai+- -+ aim, 1=1,...,n,
W=mins;, v:=maxs;.
(2 3

Theorem 1. Let g : (0,+00) — (0,400) be continuous and strictly increasing.
Suppose there exist z1 > 0, zo > 0 such that g(z1) = p, g(z2) =v. Let f(z) =
zg(x), > 0. Then (Sf) has a unique solution.



Ciurte et al.

Proof. Since f is strictly increasing, (Sy) can be written under the form
a7y + -+ af (un) =

anlf ( )+"'+annf_1(yn):yn

where y; = f(z;),i=1,...,n.
Let m := pz1, M := vzs. Then 0 < m < M, f(z1) = m, f(22) = M.
Consider the set
K:={yeR":m<y;<M,j=1,...,n}, (1)

and the function F : K — R"”,

Zn;aljf‘l(yj%--~7Zn;anjf‘1(yj) , ye K. (2)
Let y € K. Then j J
FHm) < Ny < M), j=1,000n,
which entails
= iz = M) < s m) < 3 S y) <
<sif M) < Vf‘i(M) =vap=M

for each i = 1,...,n. So we have
Z”f V<M, i=1,...,n,

which means that F(y) € K.
Summing-up, K is compact and convex, F' is continuous, and F(K) C K.
=Y

Now Brouwer’s Theorem guarantees the existence of y € K with F(y)
obviously (f~*(y1),...,f '(yn)) is a solution of (Sy).

Suppose that © = (u1,...,u,) and v = (vy,...,v,) are two distinct solutions.
Then for each ¢ = 1,...,n we have
U@+ F Unin = f(us) (3)
V1051 + - F Vpin = f(05)
Let
LU U up U
min — = -, max — = —, i.e.,
i Vg Vj i U Vg
u; U u
<<k p=1,.. n (4)
Vj (¥ Vi
From (3) we get for i =1,...,n,

Uk Qik + UG5 = f(uz) — Zl;éj,k UL Qi1 (5)
Ukaik + viai; = f(0i) = 3215 ) via-
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Since u and v are distinct solutions, it is easy to see that

Up Uy
Vg Vj

>0

and so a;; and a;; can be determined from (5). If we do this, and if we take
into account that a;; > 0 and a;; > 0, we get

vj f(u;) — i fvi) — Z (wv; —ujvr)ay >0,

1#3:k

up f(vi) — v f(u;) — E (viug, — viug)aq > 0,
[y
foralli=1,...,n.

Combined with (4), this yields

vif(ui) > uif(vi);  ugf(vi) >opf(ui), i=1,...,n (6)
Accordingly, we get

viuig(us) > ujvig(vs);  urveg(ve) > vipurg(uk),

which entails g(u;) > g(v;) and g(vx) > g(ux). Since g is strictly increasing, we
get u; > v; and vy > ug. Thus u;vr > vjug, and this contradicts (4).
So Theorem 1 is proved.

Example 1. Let ¢ > 1 and g(x) = 2971, 2 > 0. Then f(z) = 9. According
to Theorem 1, the system (S,) has a unique solution. As mentioned in the
Introduction, this result was obtained in [7, Theorem 3.1].

Theorem 2. Let h : (0,+00) — (0,+00) be continuous and decreasing. Let

fz) = @, z >0, and suppose there exist 0 < m < M such that f~'(m) = 21
(M) = . Then (Sy) has a unique solution.

Proof. By using m and M, let us consider the set K and the function F' given
by (1) and (2). As in the proof of Theorem 1, one can verify that F(K) C K.
Then the existence of a solution to (Sy) follows from Brouwer’s Theorem.

Suppose that (Sy) has two distinct solutions v and v. As in the proof of
Theorem 1, we derive the inequalities (6). Now they imply

Uj Uj Vi ULk

Since @ is strictly decreasing, we get u; < wv; and v, < wuy, which gives
h(uj) > h(v;) and h(vy) > h(ug). Therefore u;f(u;) > v;f(v;) and vi f(vg) >
ukf(uk)a i'e'7

ujop f(ug) f(or) > vju f (o) fuy). (8)
On the other hand, from (6) we deduce
v f(uk) > u;f(vr),  urf(v;) > vrf(u;) (9)

which contradicts (8). This concludes the proof of Theorem 2.
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Example 2. Let ¢ < —1 and h(z) = 297!, 2 > 0. The assumptions of
Theorem 2 are satisfied with

2 1/(‘12*1) 2 1/(q271)
m= (,uq I/q) , M= (,uquq ) .
Consequently, (S,) has a unique solution.

Example 3. Let now ¢ = —1. The system (S;) becomes
a1} 4 a102122 + -+ + a1, =1

: (10)
A1 T1Tp + Qp2ToTp + -+ + Appa? =1
x1>0,...,2, > 0.

The i*" equation is

n
2 Z
ai; Ty + x; QijT; — 1=0.
j=1
i
Since z; > 0, we get

2

5 1/2
((Zy_l,j;éi aijx]’) + 4aii> + Z?:l,j;ﬁi Aij X

(11)

Ty =

Let U := {2 € R*"|0 < z; < \/}T,z = 1,...,n}. Consider the function G :

U — R", G(z) = (Gi(z),...,Gp(x)), where G;(z) is the right-hand side of
(11). Then obviously the system (10) is equivalent to the equation

Glz)=z, xze€l. (12)

On the other hand, it is easy to see that G(U) C U. Since G is continuous and
U is compact and convex, Brouwer’s Theorem implies the existence of a solution
0 (12). So the existence of a solution to (S,) is proved also for ¢ = —1.

The uniqueness of the solution follows from Theorem 2, since the correspond-
ing proof of the uniqueness does not require the existence of m and M.

Remark 1. For —1 < ¢ <1 it is easy to construct systems of type (S;) having
several solutions; see also [7, Rem. 3.4].

3 A quasi-Newton algorithm for the system (5)

Assume that aj; = a;5, 4,5 = 1,...,n. For |¢| > 1 consider the function
n 2 n
+1
fol@) =Y aijaiz; - D IL
i,j=1 1 i=1

defined on the set P, := {z € R"|z; > 0,...,z, > 0}.
For ¢ = —1let f_1(x) := 327, ) aijwiz; — 237 loga; defined on the same
set P,,.
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For all ¢ € (=00, —1] U (1, 400) we have

0fq(x) - ,
=2 ajr;—2z!, i=1,...,n,

so that the unique stationary point of f; is the unique solution of the system
(Sq). By examining the behavior of f; near the boundary of P, we see that for
q > 1 fq attains a maximum, while for ¢ < —1 it attains a minimum in P,.

Theorem 3. A quasi-Newton algorithm for finding the extremum points of f,
s described by

n (k) 7( <k>)q
s g (g Zam et T
" " ( (k))" (k) ’
q Ty — Qpp Xy

forr=1,...,n.

k>0, (13)

Proof. Let t € P, be given. The construction of the quasi-Newton algorithm
is based on approximating f, in a neighborhood of ¢ by a "restricted” polynomial
w of the form described in (14). Of course, the approximation by a complete
polynomial of second degree will lead to the Newton algorithm; see, e.g., [6,
Sect. 3.4]. See also Remarks 3 and 4 below.

Consequently, we shall determine a function

n n
w(z) = Zvlmf —|—22uimi +ec (14)
i=1 i=1

such that
w(t) = fq(t) (15)
ow , . 0f .
axz(t)* axi(t)v 1*17"'7’”7 (16)
0w B 82fq

W(t)f 52 t), i=1,...,n. (17)
From (17) we get
vi:aiifqtgfl, i=1,...,n. (18)

Now (16) and (18) imply
Ujg :Zaijtj 7(1“t1+(Q7 l)tf{, 1= 1,,Tl (19)
j=1

The number ¢ can be determined from (15), and the resulting function w ap-
proximates f, in the neighborhood of ¢.

Let (9 € P, be given. We construct the iterates (/) as follows. Sup-
pose (%) was determined. Consider the function w associated to t = z(®); its
extremum point is
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Then we take 2(**1) to be this point; see also [6, Sect. 3.4]. According to (18)
and (19) we get

q
> a,.ja:;k) —apa® 4 (g-1) <a:£ak))

g—1
q (zg’k)) — Qpp

for r =1,...,n. This is equivalent to (13).

2B +D) =

Corollary 1. Suppose that for the sequence (x(k))k>0 given by (18) one has

lim ™ =z*>0, r=1,...,n, (20)
k— o0
Then x* = (z7F,...,x)) is a solution of the system (Sg).

Proof. Indeed, under the assumption (20) we get from (13):
Zarjx;f =), r=1,...,n.
j=1

Remark 2. Our extensive numerical experiments show that the algorithm de-
scribed in Theorem 3 converges whenever one starts with small values (if ¢ <
—1), respectively large values (if ¢ > 1) of x&o), e ,m%o), even if the matrix

(aij)i,j:Lm,n is not symmetric and n is large; see Figure 1.

Remark 3. Obviously the algorithm can be generalized in order to approximate
the solution of (Sf). It becomes

n (k) (k)
L) _ o [ 2= Oty — @)
' ' <f,(5177("k)) - arr) x&k)

and provides the extremum point of the function

, r=1,...,n, (21)

n

F(z1,...,2,) := Z Qi TiT5 — QZ o(w;)

ij=1 i=1
where ¢'(s) = f(s), s € (0,+0).

Remark 4. In order to find the extremum point of the above function F we can
use also the Newton algorithm (see, e.g., [6, Sect. 3.4.]). In our specific setting
it can be described as follows.

Let x = (x1,...,2,)" be a column vector. Consider the matriz
a1 — f'(x1) 0,12/ . a1n
Alw) = a1 agy — f'(z2) ... Qa2n
Gn1 (n2 coe pn — fl(zn)

and let ®(z) := (f(x1) — x1f(x1),. .., f(an) — a;nf’(wn))t.
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Starting with an initial solution (), the iterations are described by
-1
o+ = (A(a:(k))) o(z™), k>o0. (22)

Since the quasi-Newton algorithm (21) does not require to invert matrices,
it is simpler than the Newton algorithm (22). Being more precise, the New-
ton algorithm requires a smaller number of iterations, especially in the case of
small systems. For large problems, the quasi-Newton algorithm is more efficient
with respect to the computing time. Figure 1 displays the computing times with
(21) and respectively (22) for f(x) = 270, The involved matrices and initial
solutions are randomly generated, with increasing dimensions.

45

—&— MNewton algorithm
40 F| —F— guasi-Newton algorithm

time (s)

Matrix dimension

Figure 1: Computing times with (21) and respectively (22).

4 An extremum problem

Let ¢; = (cit, .-y Cim) €ER™, ¢;; >0,i=1,...,n;j=1,...,m. Let p; >0
be also given, i =1,...,n.
Consider the function

n
flz1, .. xm) = H(Cilxl + o+ CimTm)P

i=1
defined for x € R™ with 1 > 0,...,x,, > 0 and Z;n:l x? =1.
Then log f(z) = Z?:MH log(ciix1 + -+ + Cimxym) and the Lagrange function
associated with log f(z) is L = Y_i pilogs; — A% + -+ + 22, — 1), where
S;ii=cCi1x1+ -+ CimTm-

The stationary points for L are solutions of

D1 D2 L. Dn —
e+ et TRen = 2Aa
' (23)
%Chn + %CZm + -+ %Cnm - 2)\xm

L 5 n
i+t xn, =1
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Multiply the i*" equation by z;, i = 1,...,m, and then add; the result will be

Let t; := 24, Pi=py + -+ py.
The first m equations of (23) become

ciity + -+ cpitn = Py

Cimtl + -+ comtn = Pxy,.

Fix an i € {1,...,n}. Multiply the j** equation of (24) by ¢;j, 7 = 1,...,m,
and add to obtain
(crlei)ts + -+ + (enlei)tn = Ps; (25)
where (cjle;) = Y20, ¢jncik-
Since s; = p;/t;, we get
(ciler)ts + -+ + (enler)tn = Ppltl_1
: (26)

(cilen)ts + -+ + (cnlen)tn = Ppnt; t.

After dividing the i*" equation by Pp; we get a system of type (S,) with
q = —1. We know that it has a unique solution with t; > 0,...,t, > 0. From
(24) we get the stationary point x; the corresponding value of f is

;)

i=1
5 Examples
Example 4. Let a; >0,7=1,2,.... Systems like
t 0
A, =1 : (27)
tn tr
where
oq + oo —Q9 0 0 0
—Quy Qg + a3 —Qs 0 0
A, = 0 —Q3 a3 + oy 0 0
0 0 0 cee —ay aptapg

are inspired by the theory of snakes under the simplifying hypothesis that the
snakes acts only like a membrane, i.e. @ > 0 and 8 =0, see [4].
Since

1 1
detAk:al...ak+1<+--~+ >7 k>1,
aq A1
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a classical result of Ostrowski (see [2, Chap. 16]) shows that the entries of A~?
are strictly positive. Now (27) becomes

¥ t

A71 . = . . (28)

Setting t¥ = z;; we get a system of type (S,), with ¢ =1/p. If p € [-1,0) U
(0,1), then ¢ € (—o0,—1] U (1,+00), and we can apply the algorithm (13) in
order to solve the system (28).

In particular, if o; = 1, ¢ = 1,2,..., we are dealing with a second order
Dirichlet problem like that presented in [7, Section 2].

Example 5. When o = 0 and 8 > 0, we are lead to a system like (27), but
with ; > 0 and

B1+4P2+Bs —2B2—2083 B3 0 0 0

—2B2—2B3 Ba+4B3+B1 —2P3—2B4 Ba 0 0

B3 —2B3—2B4 B3+4Ba+Ps —2B4—205 Bs 0

A, = 0 B4 —2B4—2Bs5 Bat+4Bs+Bs —285—2P6 ... 0
0 0 0 0 0 o Bnt4Bni1+Bnta

Such a system can be solved as in Example 4.
In particular, if 3; = 1,7 = 1,2, ..., this is a fourth order difference equation
of type discussed in [7, Section 2].

Example 6. Here is an example when «; = §; = 1. The system corresponding
to (27) is

4172
8 -5 1 0 0 0 t L
-5 8 -5 1 0 0 to 2
1 -5 8 -5 1 0 ts | | 57 0
0 1 =5 8 5 1 ||t || g (29)
0 0 1 -5 8 -5 ts —1/2
0 0 1 -5 8 ts t;lm
Here p = —%; setting ti_l/2 = x;, we get the following system of type (S;) with
q=1/p=-2
0.3159 0.3708 0.3263 0.2451 0.1530 0.0650 T :171_2
0.3708 0.7377 0.7222 0.5635 0.3576 0.1530 To $52
0.3263 0.7222 1.0005 0.8566 0.5635 0.2451 T3 . :53_2
0.2451 0.5635 0.8566 1.0005 0.7222 0.3263 Ty o x4_2
0.1530 0.3576 0.5635 0.7222 0.7377 0.3708 5 ng
0.0650 0.1530 0.2451 0.3263 0.3708 0.3159 Tg 336_2

Starting with the initial solution

2(©) = (0.00004 0.0001 0.0001 0.0002 0.0005 0.0001)

10
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we obtain the solution of (30)
2B = (0.9600 0.6962 0.6206 0.6206 0.6962 0.9600).
Now the solution of (29) is obtained from t; = x;%, i =1,...,6:

t = (1.0850 2.0633 2.5963 2.5963 2.0633 1.0850).

Example 7. Let g(z) =e* — 1 and f(x) = zg(z), € (0,400). The assump-
tion if Theorem 1 are satisfied, hence the system Sy has a unique solution.
As an example, consider the system

225.90 147.09 82.88 142.50 191.99 1 x1(e™ —1)
147.09 200.99 105.75 79.87 119.30 T2 xa(e" — 1)
82.88 105.75 98.93 47.69 40.64 z3 | = x3(e® —1)
142.50 79.87 47.69 152.40 139.01 Ty xz4(e®™ — 1)
191.99 119.30 40.64 139.01 191.86 T5 x5(e®s — 1)

and choose the initial solution
20 = (61.27 30.08 79.81 79.56 78.10).
By using the quasi-Newton algorithm (21) we get the solution
282 = (6.64 6.47 599 6.34 6.52).
Example 8. Consider the function

f(éﬂl,.TQ,’lZg) = (IL’l + 2332 + 31’3)4(61'1 + 4562 + 2%3)2(411 + 9562 + .’ﬂg)g

We want to find its maximum point subject to x% + x% + x% =1, 1,229,253 > 0.
The system (26) becomes

0.3889 0.5556 0.6944 t1 it
11111 3.1111 3.4444 ta | =1 3"
0.9259 2.2963 3.6296 ts t3"

The algorithm (13), applied to this system, gives the solution
tp = 1.1721, ty =0.2960, t3=0.3353.
Now (24) yields
1 = 0.4766, xzo =0.7274 x3 = 0.4938. (31)

This is the required maximum point.
It is instructive to have another look at our extremum problem. Indeed, it
is equivalent to the problem of finding the maximum point of

z(x1,29) =

(z14+2224+34/1 — 27 — 23)* (621 +4wo+24/1 — 27 — 23)? (421 +922+1/1 — 27 — 23

11
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subject to x1 > 0, x9 > 0, 23 + 23 < 1.
Passing to polar coordinates

x1 =pcosl, xzo=psing, 0<p<]l, O<9<g

we obtain a function z having the graph as in Fig. 2.
The maximum point corresponds to

p=0.8696, 6 = 0.9907,

which leads to (31).

Figure 2: The graph of the function z

6 Concluding remarks

As seen above, the algorithm described in Theorem 3 and Remark 3 works
very well in order to solve systems of type (Sy) and the corresponding extremum
problems. It provides an accurate approximation of the exact solution in a small
number of iterations. This is explained, apart from the convergence theorems
for general systems of nonlinear equations, by the essential feature of our special
setting: the existence and uniqueness of the solution, proved in our article. The
rate of convergence is governed by the general rules of quasi-Newton algorithms.

On the other hand, in the general setting of the Expectation -Maximization
Algorithm (see [5]), we developed in [3] a generalization of the EMML and ISRA
algorithms for solving the Positron Emission Tomography problem. Similar
algorithms for solving the system (Sy) will be discussed in a forthcoming paper.
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